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Dorris DM, Cao J, Willett JA, Hauser CA, Meitzen J. Intrinsic
excitability varies by sex in prepubertal striatal medium spiny neu-
rons. J Neurophysiol 113: 720-729, 2015. First published November
5,2014; doi:10.1152/jn.00687.2014.—Sex differences in neuron elec-
trophysiological properties were traditionally associated with brain
regions directly involved in reproduction in adult, postpubertal ani-
mals. There is growing acknowledgement that sex differences can
exist in other developmental periods and brain regions as well. This
includes the dorsal striatum (caudate/putamen), which shows robust
sex differences in gene expression, neuromodulator action (including
dopamine and 17pB-estradiol), and relevant sensorimotor behaviors
and pathologies such as the responsiveness to drugs of abuse. Here we
examine whether these sex differences extend to striatal neuron
electrophysiology. We test the hypothesis that passive and active
medium spiny neuron (MSN) electrophysiological properties in pre-
pubertal rat dorsal striatum differ by sex. We made whole cell
recordings from male and females MSNs from acute brain slices. The
slope of the evoked firing rate to current injection curve was increased
in MSNs recorded from females compared with males. The initial
action potential firing rate was increased in MSNs recorded from
females compared with males. Action potential after-hyperpolariza-
tion peak was decreased, and threshold was hyperpolarized in MSNs
recorded from females compared with males. No sex differences in
passive electrophysiological properties or miniature excitatory synap-
tic currents were detected. These findings indicate that MSN excit-
ability is increased in prepubertal females compared with males,
providing a new mechanism that potentially contributes to generating
sex differences in striatal-mediated processes. Broadly, these findings
demonstrate that sex differences in neuron electrophysiological prop-
erties can exist prepuberty in brain regions not directly related to
reproduction.

intrinsic excitability; sex differences; medium spiny neuron; dorsal
striatum; mEPSC

NEURAL SEX DIFFERENCES ARE well established in many vertebrate
brain regions, especially those directly involved in reproduc-
tion in adult, postpubertal animals (Breedlove and Hampson
2002; De Vries 2004; Yang and Shah 2014). Examples of these
include the sexually dimorphic nucleus of the preoptic area
(SDN) (Gorski et al. 1978), the spinal nucleus of the bulbo-
cavernosus (SNB) (Breedlove and Arnold 1981), and the
telencephalic song control nuclei in sexually dimorphic song-
birds (Nottebohm and Arnold 1976). These now famous brain
regions all show robust sex differences in neuroanatomy and
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physiology and clear behavioral relevance to sex specific
behaviors. What is less clear is the extent of sex differences in
basic neurophysiological properties in brain regions without
such dramatic sex differences in neuroanatomy, especially
during the prepubertal period widely used for electrophysio-
logical recordings. This is an important and timely question,
given the current debate regarding how to properly account for
sex in both basic and clinical biomedical science (Arnold and
Lusis 2012; Beery and Zucker 2011; Cahill 2006; Geller et al.
2011; Prendergast et al. 2014; Woodruff et al. 2014), the
known sex differences in many neural pathologies (Becker et
al. 2013; Cosgrove et al. 2007; Giorgi et al. 2014; Ober et al.
2008), and the growing literature for sex differences in synap-
tic organization/neuromodulation across the nervous system
(Babayan and Kramar 2013; Cooke and Woolley 2005; Huang
and Woolley 2012; Mermelstein et al. 1996; Nunez and Mc-
Carthy 2008; Remage-Healey 2014; Srivastava et al. 2010).

We thus chose to investigate sex differences in the rat dorsal
striatum (caudate/putamen). This brain region was targeted for
both its prominence and the known sex differences in striatal-
mediated behaviors and pathologies. These include significant
sex differences in steroid sex hormone influences on sensori-
motor function and behaviors, impulsivity, and striatal-medi-
ated learning (Becker 2002; Calhoun 1962; Eckel et al. 2000;
Hosseini-Kamkar and Morton 2014; Zurkovsky et al. 2007).
Regarding pathologies, robust sex differences exist in the
responsiveness to drugs of abuse in both humans and rats
(Becker and Hu 2008; Becker et al. 2013; Bobzean et al. 2014,
Carroll and Anker 2010; Fattore et al. 2014). Across models,
females exhibit increased locomotor sensitivity, escalation, and
motivation to take psychostimulants after initial exposure com-
pared with males, with estradiol playing a significant mecha-
nistic role. Interestingly, the rat dorsal striatum and nucleus
accumbens express little to no nuclear estrogen receptors, and
instead express membrane-associated estrogen receptors « and
B and GPER-1 (Almey et al. 2012; Grove-Strawser et al. 2010;
Kuppers and Beyer 1999; Mermelstein et al. 1996; Schultz et
al. 2009).

Given the importance of these behaviors and pathologies,
much research has established sex differences in adult striatum
gene expression (Chen et al. 2009; Ghahramani et al. 2014;
Trabzuni et al. 2013), estradiol sensitivity (Cummings et al.
2014; Grove-Strawser et al. 2010; Mermelstein et al. 1996;
Schultz et al. 2009), catecholamine action (Becker and Hu
2008; Becker et al. 2013; Di Paolo 1994; Meitzen et al. 2013),
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AFosB expression (Sato et al. 2011), and GABA and dopamine
release (Becker 1990; Hu et al. 2006; Walker et al. 2000; Xiao
and Becker 1998). In a related brain region, the nucleus
accumbens, sex differences in synaptic organization have been
found (Forlano and Woolley 2010; Wissman et al. 2012;
Wissman et al. 2011). In contrast to regions like the SDN,
SNB, and sexually dimorphic song control nuclei, striatal brain
regions show no sex differences in neuron density or soma size
(Meitzen et al. 2011), and the volume of the nucleus accum-
bens does not differ by sex (Campi et al. 2013). Most notably,
it is unknown whether the basic electrophysiological properties
of striatal neurons differ by sex.

Here we test the hypothesis that passive and active medium
spiny neuron (MSN) electrophysiological properties in prepu-
bertal rat dorsal striatum (caudate/putamen) differ by sex. The
prepubertal period was chosen as it is widely used for electro-
physiological recordings. We raised male and female rats and
then recorded from MSNs using whole cell current clamp
configuration in acute brain slices of dorsal striatum. We found
that the active electrophysiological properties varied by sex,
with female MSNs exhibiting increased intrinsic excitability
compared with male MSNs. No sex differences in passive
electrophysiological properties or miniature excitatory synap-
tic currents (mEPSCs) were detected. These findings provide
insight on a new mechanism that potentially contributes to sex
differences in striatal-mediated behavior and pathologies.
Broadly, these findings demonstrate that sex differences in
neuron electrophysiological properties can exist prepuberty in
brain regions not directly related to reproduction.

MATERIALS AND METHODS
Animals

All animal protocols were approved by Institutional Animal Care
and Use Committee at North Carolina State University or the Marine
Biological Laboratory. Experiments took place at both institutions.
Female (n = 18) and male (n = 18) Sprague-Dawley CD IGS rats
were born from timed-pregnant females purchased from Charles River
(Raleigh, NC). Rats were housed with their littermates and dam until
weaning on postnatal day 2/ (P21), and afterward with same-sex
littermates. Age at experimental use ranged from P11 to P23 and was
matched between sexes (mean * SE: male, P15 * 1; female, P15 =
1). All cages were washed polysulfone (BPA-free) and were filled
with bedding manufactured from virgin hardwood chips (Beta Chip;
NEPCO, Warrensburg, NY) to avoid the endocrine disruptors present
in corncob bedding (Mani et al. 2005; Markaverich et al. 2002;
Villalon Landeros et al. 2012). Rooms were temperature, humidity,
and light controlled (23°C, 40% humidity, 12 h light-12 h darkness
cycle). Soy protein-free rodent chow (2020X; Teklad, Madison, WI)
and glass-bottle provided water were available ad libitum.

Electrophysiology

Preparation of brain slices. Methods for preparing brain slices for
electrophysiological recordings were as previously described (Dorris
et al. 2014). Rats were deeply anesthetized with isoflurane gas and
killed by decapitation. The brain was dissected rapidly into ice-cold,
oxygenated sucrose artificial cerebrospinal fluid (ACSF) containing
(in mM): 75 sucrose, 1.25 NaH,PO,, 3 MgCl,, 0.5 CaCl,, 2.4 Na
pyruvate, 1.3 ascorbic acid from Sigma-Aldrich (St. Louis, MO), and
75 NaCl, 25 NaHCO;, 15 dextrose, 2 KCIl from Fisher (Pittsburg,
PA); osmolarity 295-305 mOsm, pH 7.2-7.4. Coronal brain slices
(300 wm) were prepared using a vibratome and then incubated in

regular ACSF containing (in mM): 126 NaCl, 26 NaHCO;, 10
dextrose, 3 KCl, 1.25 NaH,PO,, 1 MgCl,, 2 CaCl,, 295-305 mOsm,
pH 7.2-7.4, for 30 min at 35°C, and at least 30 min at room
temperature (21-23°C). Slices were stored submerged in room tem-
perature, oxygenated ACSF for up to 5 h after sectioning in a large
volume bath holder.

Electrophysiological recording. After resting for =1 h after section-
ing, slices were placed in a Zeiss Axioscope equipped with IR-DIC
optics, a Dage IR-1000 video camera, and X10 and X40 lenses with
optical zoom. Slices were superfused with oxygenated ACSF heated to
27 £ 1 °C (male 27 £ 1°C, female 27 = 1 °C; P > 0.05). In some
experiments, ACSF contained the GABA , receptor antagonist picrotoxin
(PTX, 150 uM; Fisher), the NMDA receptor antagonist D-APS5 (10 uM,
Sigma-Aldrich), and the AMPA receptor antagonist DNQX (25 uM;
Tocris, Minneapolis, MN). Whole cell patch-clamp recordings were
made from MSNs in the dorsal striatum via glass electrodes (4—8
MQ) containing (in mM): 115 K p-gluconate, 8 NaCl, 2 EGTA, 2
MgCl,, 2 MgATP, 0.3 NaGTP, 10 phosphocreatine from Sigma-
Aldrich and 10 HEPES from Fisher, 285 mOsm, pH 7.2-7.4. Signals
were amplified, filtered (2 kHz), and digitized (10 kHz) with a
MultiClamp 700B amplifier attached to a Digidata 1550 system and a
personal computer using pClamp 10 software. Membrane potentials
were corrected for a calculated liquid junction potential of —13.5 mV.
Using previously described procedures (Farries et al. 2005; Meitzen et
al. 2009), recordings were made in current clamp to assess neuronal
electrophysiological properties. MSNs were identified by their medi-
um-sized somas, the presence of a slow ramping subthreshold depo-
larization in response to low-magnitude positive current injections, a
hyperpolarized resting potential more negative than —65 mV, inward
rectification, and prominent spike after-hyperpolarization (AHP) (Bel-
leau and Warren 2000; O’Donnell and Grace 1993).

In a subset of recordings, MSNs were then voltage-clamped at —70
mV and mEPSCs recorded in the presence of tetrodotoxin (TTX, 1
uM; Abcam Biochemicals) and PTX (150 uM). These recording
parameters make the recorded mEPSCs to be most likely AMPA
receptor mediated. mEPSCs were recorded for at least 5 min, with the
exception of one female neuron that was recorded for 3 min. Input and
series resistance was monitored for possible changes, and cells were
discarded if input or series resistance changed >15%.

Data Analysis

Basic electrophysiological properties and action potential (AP)
characteristics were analyzed with pClamp 10. After break-in, the
resting membrane potential was first allowed to stabilize ~1-2 min, as
in (Mu et al. 2010). We then injected at least three series of depolar-
izing and hyperpolarizing current injections to elicit basic neurophys-
iological properties (Meitzen et al. 2009). For most properties mea-
sured, we followed the definitions of (Meitzen et al. 2009), which
were drawn from those of Farries and colleagues (Farries et al. 2005;
Farries and Perkel 2000; 2002). Following Farries, for each neuron,
measurements were made of at least five APs generated from minimal
current injections. These measurements were then averaged to gener-
ate the reported AP measurement for that neuron. For AP measure-
ments, only the first generated AP was used unless more APs were
required to meet the standard five APs per neuron. We used different
methods from Farries to calculate AP threshold, steady-state firing
rate, rectified range input resistance, inward rectification, and percent
inward rectification. AP threshold was defined as the first point of
sustained positive acceleration of voltage (§2V/8t?) that was also more
than three times the SD of membrane noise before the detected
threshold (Baufreton et al. 2005). We defined steady-state firing rate
as the mean firing rate over the last 300 ms of the current pulse (Gale
and Perkel 2006). Initial firing rate was defined as the inverse of the
first interspike interval. Rectified range input resistance, inward rec-
tification, and percent inward rectification were calculated as de-
scribed previously (Belleau and Warren 2000). The slope of the
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evoked firing rate to positive current curve (FI slope) was calculated
from the first current that evoked an AP to the first current that
generated the maximum evoked firing rate (Meitzen et al. 2009). Input
resistance in the linear, nonrectified range was calculated from the
steady-state membrane potential in response to —0.02 nA hyperpo-
larizing pulses. The membrane time constant was calculated by fitting
a single exponential curve to the membrane potential change in
response to —0.02 nA hyperpolarizing pulses. Membrane capacitance
was calculated using the following equation: capacitance = mem-
brane time constant/input resistance. Sag index was used to assess
possible sex differences in hyperpolarization-induced “sag” (i.e., Iy
current) (Farries et al. 2005). Sag index is the difference between the
minimum voltage measured during the largest hyperpolarizing current
pulse and the steady-state voltage deflection of that pulse, divided by
the steady-state voltage deflection. Thus, a cell with no sag would
have a sag index of 0, whereas a cell whose maximum voltage
deflection is twice that of the steady-state deflection would have a sag
index of 1. Cells with considerable sag typically have an index of
=0.1.

mEPSC frequency, amplitude, and decay were analyzed off-line
with Mini Analysis (Synaptosoft, http://www.synaptosoft.com/
MiniAnalysis/). Threshold was set at 2.5, the value of the root mean
square of 10 blocks of the baseline noise with a minimum value of 5
PA, and accurate event detection was validated by visual inspection.
There were no differences in root mean square noise between sexes
(male 1.1 = 0.01, female 1.5 £ 0.02; #,4, = 1.923; P > 0.05).

Statistics

Experiments were analyzed by two-tailed z-tests, Mann-Whitney
tests, Kolmogorov-Smirnov tests, one- or two-way ANOVAs, linear
regressions, or ANCOV As (Excel 2010, Microsoft, Redmond, WA, or
Prism version 5.00, GraphPad Software, La Jolla, CA). Distributions
were analyzed for normality by the D’ Agostino and Pearson omnibus
normality test, and #-tests or Mann-Whitney tests were employed as
appropriate. The use of r-tests or Mann-Whitney tests did not alter
overall experimental conclusions. P values < 0.05 were considered a
priori as significant. Data are presented as means = SE.

RESULTS

We recorded from 33 MSNs from 18 prepubertal male rats
and 32 MSNs from 18 prepubertal female rats. MSNs are the
predominant neuron type in the dorsal striatum, projecting both
within and outside the brain region. MSN electrophysiological
properties closely resembled those reported in earlier studies
that used males or animals of undetermined sex, including the
presence of a slow ramping subthreshold depolarization in
response to low-magnitude positive current injections, a hy-
perpolarized resting potential, inward rectification, and prom-
inent spike AHP (Fig. 1A, Table 1) (Belleau and Warren 2000;
Farries et al. 2005; O’Donnell and Grace 1993; Shen et al.
2004).

Female MSNs Show Increased Evoked Firing Rates
Compared With Male Neurons

We then tested the hypothesis that MSN electrophysiologi-
cal properties varied between males and females by injecting
MSNs with a series of positive and negative currents and
assessing standard electrophysiological properties (Table 1).
Several electrophysiological properties related to intrinsic ex-
citability varied by sex, collectively indicating that female
MSNs showed increased excitability compared with male
MSNs. Action potential firing rates evoked by depolarizing

current injection were visibly increased in MSNs recorded
from female rats compared with male rats (Fig. 1, A and B). We
quantified this by comparing the slope of the evoked firing rate
to positive current curve (FI slope) between male and female
MSNs (Fig. 1C). MSNs from female animals showed a steeper
FI slope compared with MSNs recorded from male animals
(te1) = 3.026, P < 0.004). This indicates that female neurons
fire more APs per ampere of injected current throughout the
linear range, reaching maximum rates more quickly. Support-
ing this finding, the cumulative distribution of female MSN FI
slopes also differed from that recorded from male MSNs (Fig.
1D; Dy = 0.3909, P < 0.02). These data indicate that MSNs
show increased excitability in females compared with males.

There was no difference in maximum firing rate between
MSNs recorded from males and females (male 16.7 = 1.7 Hz,
female 15.2 = 1.2 Hz; ¢4, = 0.70, P > 0.05), suggesting that
the sex difference in AP generation likely involves either the
delay to first spike or the initial firing rate (initial: firing rate of
the first interspike interval, early in the current injection). No
sex differences were detected in the delay to first spike at either
the minimum current injection necessary for AP generation
(Table 1), or at A10 pA from the minimum current injection
necessary for AP generation (male 99 = 7 ms, female 99 *+ 9;
P > 0.05). Instead, female MSNs showed increased initial
firing rates compared with male MSNs (Fig. 1E; sex F(; 559, =
7.014, P < 0.009; current F(s 559, = 24.22, P < 0.0001;
interaction F(s 559y = 0.1556, P > 0.05). We note that one
outlier (>>+4 SDs from the mean) in the female group was not
included in analysis of the instantaneous firing rate. Removal
of this outlier did not change experimental conclusions (statis-
tics including outlier: sex F(; 565 = 9.251, P < 0.003; current
F(s5. 265y = 3.687, P < 0.004; interaction F5 45, = 0.0852, P>
0.05). Conversely, while the overall magnitude of the steady
state firing rate (steady state: mean firing rate over the last 300
ms of the current injection) was increased in female MSNs
compared with male MSNs across current injections, this did
not reach statistical significance (Fig. 1F; sex F(; 565, = 2.616,
P > 0.05; current F(5 565, = 8.187, P < 0.0001; interaction
Fs, 265y = 0.1030, P > 0.05).

Female MSNs Show Decreased AHP and Hyperpolarized AP
Threshold Compared With Male Neurons

A sex difference in evoked firing rate suggests that there
may be differences in either AP properties or the passive
membrane properties of the MSN. Regarding AP properties,
female MSNs showed decreased magnitude of the AHP peak
compared with male MSNs (Fig. 1G, 74, = 3.035, P < 0.004).
The cumulative distribution of AHP peaks recorded from
female MSNs also differed from those recorded from male
MSNs (Fig. 1H, D4y = 0.3212, P < 0.005). The AP threshold
also differed by sex, with female MSNs showing a hyperpo-
larized AP threshold compared with male MSNs (Fig. 11, 14,y =
2.099; P < 0.041). The cumulative distribution of female MSN
AP thresholds also differed from those recorded from male
MSNs (Fig. IJ, Dy = 0.2697, P < 0.05). No other AP
property differed by sex (Table 1). These data support the
hypothesis that decreased AHP peak and hyperpolarized AP
potentials comprise part of the mechanism underlying in-
creased excitability in female MSNs, especially given that both
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Fig. 1. Evoked firing rate is increased in medium spiny neurons (MSNs) recorded from prepubertal rat females compared with males in dorsal striatum, and this
is driven by sex differences in action potential properties. A: response of a MSN from a male (left) and from a female (right) to depolarizing current injections.
B: evoked firing rate and injected current (FI) curves of individual MSNs differ by sex. C: MSNs recorded from females show an increased slope of the evoked
firing rate to injected current curve (FI slope). D: the cumulative frequency distribution of MSN FI slopes is shifted to the right in females. E: mean initial firing
rate (the reciprocal of the Ist interspike interval) is increased in MSNs recorded from females. F: mean steady-state firing rate (mean firing rate over the last 300

ms of the current injection) does not significantly differ by sex. However, we do
in males. G: action potential (AP) after-hyperpolarization (AHP) peak amplitude

note that the mean steady-state firing rate is consistently higher in females than
is decreased in females. H: the cumulative frequency distribution of MSN AHP

peak amplitude is shifted to the right in females. I: AP threshold is hyperpolarized in females. J: the cumulative frequency distribution of MSN AP threshold
is shifted to the left in females. The P value within each subpanel indicates statistical significance; complete statistical information is in RESULTS.

of these properties are associated with changes in MSN excit-
ability in other contexts (Mu et al. 2010; Shen et al. 2005).
We reasoned that if these sex differences in AP properties
contribute to sex differences in FI slope, then these properties
should be correlated. We thus calculated linear regressions
between MSN FI slopes and, respectively, AHP peaks and AP
thresholds. Increased FI slopes strongly associated with de-
creased AHP peaks (Fig. 24; slope 0.02, r* = 0.35, P < 0.001).
Likewise, FI slope and AP threshold also correlated, with
increased FI slopes associating with hyperpolarized AP thresh-
olds (Fig. 2B; slope —0.02, =008 P< 0.03). To validate
this methodology, we also calculated a linear regression be-
tween AHP peak and AP threshold, finding that decreased
AHP peaks associated with hyperpolarized thresholds (Fig. 2C,
slope —1.22, ?=035P< 0.0001). This makes sense given

that female MSNs exhibit both of these properties and in-
creased FI slope. These data indicate that decreased AHP peak
and hyperpolarized AP threshold are associated with increased
neuron excitability.

In addition to AP properties, other mechanisms that could
potentially drive differences in MSN excitability are changes in
passive membrane properties such as the input resistance or the
membrane time constant. Passive membrane properties were
not different between male and female MSNs (Table 1). This
included input resistance in both the linear and rectified ranges
(Fig. 3; F3570) = 0.02657, P > 0.05), the membrane time
constant, and capacitance (Table 1). The lack of sex differences
in capacitance is consistent with a previous report showing no
sex difference in MSN soma size in rat dorsal striatum (Meit-
zen et al. 2011). These results support the hypothesis that sex
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Table 1. Electrophysiological properties of male and female
medium spiny neurons
Statistics
Property Male Female (U, P)
Resting potential,

mV —81.2 £ 0.9 (33) —=80.0 £1.2(31) 0.52,0.40
Input resistance, MQ 448 *= 42 (33) 465 = 42 (31) 484, 0.72
Time constant of the

membrane, ms 23 = 1(33) 27 £2(31) 1.74, 0.08
Capacitance, pF 61 =4 (33) 69 =7 (31) 476, 0.64
Rectified range input

Resistance, MQ) 289 + 29 (33) 291 =26 (31) 499, 0.87
Inward rectification,

MQ 156 = 18 (33) 175 £ 19 31) 0.72,0.47
% Inward

rectification, % 67 =2 (33) 65 =2 (31) 0.86, 0.39
Sag index 0.01 £ 0.00 (33) 0.01 £0.00 (31) 501, 0.89
AP threshold, mV —54 +1(33) —58 =1 (30) 2.09, 0.040
AP amplitude, mV 72 £2(33) 75 £2(30) 1.26,0.21
AP width at half-

peak, ms 2.6 = 0.1 (33) 2.6 = 0.1(30) 0.27,0.78
AHP peak, mV —10.8 = 0.7 (33) —8.3+0.4(30) 3.04,0.004
AHP time to peak,

ms 529 *+2.9(33) 479 =4.1(30) 1.18,0.24
Delay to first spike,

ms 313 =15 (33) 307 =19 (30) 0.24,0.81
Rheobase, nA 0.040 = 0.008 (33)  0.025 = 0.004 (30) 356, 0.053
FI slope, Hz/nA 312.1 £18.5(33)  395.2 =20.4 (30) 3.03,0.004

Values are means = SE. Numbers in parentheses indicate sample size. The
sag index is unitless. None of these neurons fired spontaneous action poten-
tials. Statistical differences between groups are depicted in boldface. Data were
analyzed with z-tests or Mann-Whitney U-tests as appropriate. AP, action
potential; AHP, afterhyperpolarization; FI, frequency of evoked spikes to
injected depolarization current.

differences in MSN excitability are driven by differences in
action potential properties and not passive membrane proper-
ties.

Sex Differences Are Not Blocked by Glutamate and GABA
Receptor Antagonists

Our working model regarding these particular sex differ-
ences in MSN electrophysiological properties is that they are
intrinsic to the neuron and not driven by external synaptic
input. If this interpretation is correct, then sex differences
should be preserved during blockade of glutamatergic and
GABAergic receptors. To test this hypothesis, we exposed a
subset of MSNss to a cocktail of the NMDA receptor antagonist
D-AP5 (10 uM), the AMPA receptor antagonist DNQX (25
uM), and the GABA , receptor antagonist PTX (150 uM). This
drug combination eliminated spontaneous postsynaptic poten-
tials (Fig. 4A), indicating effective blockade of glutamatergic
and GABAergic receptors. We then assessed standard electro-
physiological properties as described above. Exposure to
D-AP5, DNQX, and PTX did not eliminate sex differences in
either FI slope (Fig. 4B; sex F(; g, = 13.92, P < 0.03; drug
Fp g = 178, P > 0.05), AHP peak (Fig. 4C; sex F(q g =
13.92, P < 0.045; drug F, g = 1.78, P > 0.05) or AP
threshold (Fig. 4D; F(; g = 13.92, P < 0.02; drug F, g =
0.07, P > 0.05). Exposure to D-AP5, DNQX, and PTX did not
alter any other measured electrophysiological property (data
not shown). We also note that the sampled male neurons by
chance exhibited decreased FI slopes and increased magnitudes
of the AHP peak compared with the overall data set (analysis
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Fig. 2. Sex differences in AP properties correlate with sex differences in FI
slope. A: decreased AHP peaks associate with increased FI slopes. B: hyper-
polarized AP thresholds associate with increased FI slopes. C: hyperpolarized
AP thresholds associate with decreased AHP peaks. The P value within each
panel indicates statistical significance; complete statistical information is in
Results.

not shown). Overall, these data support the hypothesis that sex
differences in MSN electrophysiological properties are intrin-
sic and not driven by glutamatergic or GABAergic synaptic
input.

Injected Current (nA)
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Fig. 3. No sex difference is detected in input resistance in either the linear or
rectified range. See RESULTS and Table 1 for statistical analysis.
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Fig. 4. Sex differences are not driven by synaptic input or by age at recording. A: example blockade of miniature postsynaptic potentials via simultaneous
application of picrotoxin (PTX), DNQX, and AP-5 to block GABAergic and glutamatergic synaptic activity. B: sex differences in FI slope were not blocked by
drug application. C: sex differences in AHP peak were not blocked by drug application. D: sex differences in AP threshold were not blocked by drug application.
E: relationship of FI slope and age of the animal at recording. The linear regression of the female data set shows an increased intercept compared with the male.
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statistical significance; complete statistical information is in RESULTS.

Sex Differences Are Present Across All Examined Ages

A priori, we hypothesized that sex differences in electro-
physiological properties would be stable throughout the re-
corded prepubertal period. This hypothesis was chosen given
that MSNs reach electrophysiological maturity after the initial
critical period for organizational steroid sex hormone action,
which may program sex differences in the dorsal striatum and
relevant behaviors/pathologies. To test the interaction of sex
differences in MSN electrophysiological properties with age at
recording, MSNs were analyzed across a sex-matched age
range that encompassed the late prepubertal period (male
P15 * 1, female P15 * 1; 45 = 0.36, P > 0.05). The age
range began with the onset of the presence of mature MSNs
(~P11) to prior to weaning (~P20) to just before the beginning
of the peripubertal period (~P22-P24). We then calculated
linear regressions between age and male and female MSN FI
slope, AHP peak, and AP threshold. We first analyzed whether
the slopes of the linear regressions were significantly nonzero
to determine whether the measured property differed by age.
We then analyzed whether the slopes and elevations/intercepts
differed by sex.

FI slope decreased with age in both males and females (Fig.
4E) (male: slope —11.82, r> = 0.14, P < 0.05; female: slope
—12.24, r* = 0.13, P < 0.05), similar to previously reported
results in MSNs recorded from rat nucleus accumbens of
unknown sex (Belleau and Warren 2000). The slopes of the
linear regressions did not differ by sex (F(; sy = 0.00, P >
0.05). However, the intercept of the regression did vary by sex,
with females showing increased FI slope across all ages (male
intercept 496, female intercept 571; F(; 40y = 6.84, P < 0.02).
AHP peak amplitude remained stable with age in females but
not in males (Fig. 4F; male slope —0.453, 2 =0.14, P < 0.03;
female slope 0.04, 2 =0.00, P> 0.05). Thus, the slopes of the
linear regressions differed by sex (F(; 59y = 4.14, P < 0.05).
AP threshold did not change across age in either males or
females (Fig. 4G, male slope —0.06, = 0.00, P > 0.05;
female slope —0.36, r* = 0.03, P > 0.05), similar to previously
reported results of accumbal and dorsal striatal MSNs of
unknown sex (Belleau and Warren 2000; Tepper et al. 1998).
Accordingly, the slopes of the linear regressions did not differ
by sex (F(;59) = 0.30, P > 0.05). The intercept did differ by
sex, with females showing hyperpolarized AP threshold across
all ages compared with males (male intercept —53.08, female
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Fig. 5. No sex differences are detected in miniature excitatory synaptic current
(mEPSC) properties. A: representative examples of mEPSCs recorded in male
and female dorsal striatum MSNs. MSNs were voltage clamped at —70 mV
and recorded in the presence of tetrodotoxin (TTX) and PTX to block
voltage-gated sodium channels and GABAergic synaptic activity, respectively.
B, left: no sex difference was detected in MSN mEPSC frequencies. Right: no
sex differences were detected in the cumulative frequency distribution of MSN
mEPSC frequencies. C, left: no sex difference was detected in MSN mEPSC
amplitude. Right: no sex difference was detected in the cumulative frequency
distribution of MSN mEPSC amplitudes. D, left: no sex difference was
detected in MSN mEPSC decay time. Right: no sex difference was detected in
the cumulative frequency distribution of MSN mEPSC decay times. The P
value within each subpanel indicates statistical significance; complete statisti-
cal information is in RESULTS.

intercept —52.62; F(; o, = 4.78, P < 0.035). We note that sex
differences in the linear regressions of FI slope, AHP peak, and
AP threshold are maintained when postweaning animals are
excluded from analysis (data not shown). Collectively, these
results indicate that sex differences in MSN electrophysiolog-
ical properties are determined early in development and are
already present in the prepubertal period analyzed here.

No Sex Differences Are Detected in mEPSC Properties

In a subset of recordings, we voltage-clamped 10 male and
11 female MSNs to —70 mV and recorded mEPSCs in the
presence of TTX and PTX (Fig. 5A). We then analyzed
mEPSC frequency, amplitude, and decay (Table 2). This was
spurred by the recognition that intrinsic electrophysiological
properties act in concert with synaptic properties to generate
neuronal output and by a previous report of sex differences in
mEPSC properties in adult rat nucleus accumbens core (Wiss-
man et al. 2011). No sex differences were detected in mEPSC
frequency (Fig. 5B; 119y = 1.632, P > 0.05), mEPSC ampli-
tude (Fig. 5C; 149, = 0.5259, P > 0.05), or mEPSC decay (Fig.
5D; t9, = 1.078, P > 0.05). To further test this conclusion,
we then analyzed mEPSC properties by age at recording. To
do this, we calculated linear regressions between age and
male and female MSN mEPSC frequency, amplitude, and
decay. We first analyzed whether the slopes of the linear
regressions were significantly nonzero to determine whether
the measured property differed by age. We found no slopes
that were significantly nonzero, indicating little change over
the analyzed age range (data not shown). We then analyzed
whether the slopes and elevations/intercepts of mEPSC
frequency, amplitude, and decay differed by sex. No differ-
ences were detected (data not shown). Overall, these data
indicate that sex differences in prepubertal MSN do not
include mEPSC properties.

DISCUSSION

There are five general findings of these experiments. First,
the slope of the evoked firing rate to current injection curve
was increased in MSNs recorded from females compared with
males. Second, the initial action potential firing rate was
increased in MSNs recorded from females. Third, AP AHP
peak was decreased and AP threshold hyperpolarized in MSNs
recorded from females. Fourth, no sex differences in passive
electrophysiological or mEPSC properties were detected. Fifth,
these sex differences were not attenuated by GABAergic or
glutamatergic receptor blockade and were present across all
ages examined. These findings indicate that MSN intrinsic
membrane excitability in the dorsal striatum is increased in
prepubertal females compared with males. Broadly, these find-

Table 2. mEPSC properties of male and female medium spiny

neurons

mEPSC Property Male Female Statistics (¢, P)
Frequency, Hz 1.7 = 0.4 (10) 3.1 =20.9(11) 1.36, 0.19
Amplitude, pA 9.5+ 0.6 (10) 9.5*0.6(11) 0.53, 0.61
Decay, ms 5.9 = 0.7 (10) 49+0.7(1 1.08, 0.29

Values are means = SE. Numbers in parentheses indicate sample size. No
significant differences were detected. mEPSC, miniature excitatory synaptic
current.
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ings show that sex differences in neuron electrophysiological
properties can occur in brain regions not directly related to
reproduction and during the prepubertal developmental period
in which many neuron electrophysiological recordings take
place.

To our knowledge this is the first report of a sex difference
in an intrinsic electrophysiological property of the MSN, pro-
viding a new potential mechanism for the known sex differ-
ences in striatal-mediated behavior and pathologies. Intrinsic
membrane excitability regulates AP generation in response to
synaptic input (Hille 2001), making intrinsic excitability a key
player in determining the functional output of striatal circuitry
and a final common convergence point of all striatal sex
differences. Multiple ion channels have been implicated in
generating differences in intrinsic excitability, with particular
targets in MSNs including soma-expressed sodium channels,
calcium-activated potassium channels, and L-type calcium
channels (Hille 2001; Kole and Stuart 2012; Kourrich and
Thomas 2009; Mermelstein et al. 1996; Mu et al. 2010; Zhang
et al. 1998). Determining which of these drive sex differences
in intrinsic excitability is an important future extension of this
study.

Intrinsic excitability is strongly implicated in both normal
and pathological striatal function (Ishikawa et al. 2009; Kour-
rich and Thomas 2009; Mu et al. 2010; Wolf 2010; Zhang et al.
1998). Indeed, previous research has not only found differ-
ences in MSN intrinsic membrane excitability related to ho-
meostatic plasticity (Ishikawa et al. 2009) and drugs of abuse
(Kourrich and Thomas 2009; Mu et al. 2010; Wolf 2010;
Zhang et al. 1998), but also differences in intrinsic excitability
between DI1- and D2-dopamine receptor expressing MSNs
(Gertler et al. 2008; Planert et al. 2013). These differences in
intrinsic excitability between MSN subtypes are already pres-
ent in rats during the prepubertal period examined here. One
possibility is that sex differences in MSN intrinsic excitability
were generated by differential sampling of D1- or D2-dopa-
mine receptor expressing MSNs. We believe this to be un-
likely. In rats of the same age range employed in the current
study, DI1- vs. D2-dopamine receptor expressing MSNs
showed differences in passive membrane properties including
input resistance, the membrane time constant, and rheobase
(Planert et al. 2013). We found no sex differences in passive
membrane properties, only in active properties such as the
slope of the FI curve and AP threshold and AHP peak ampli-
tude. There were also no signs of bimodality in any property.
Thus, the recorded sex differences in MSN intrinsic excitabil-
ity do not match those reported for rat MSN subtypes and are
not likely driven by differential sampling.

A related question is whether both MSN subtypes show sex
differences in intrinsic excitability. Future studies should di-
rectly test this question. In the meantime, we sorted the present
dataset for each sex to find neurons with the 10 lowest and 10
highest values for three attributes that differ between rat MSN
subtypes: input resistance, membrane time constant, and rheo-
base (Planert et al. 2013). We did this to bias each dataset
toward containing unequal proportions of MSN subtypes. We
then used two-way ANOV As to analyze whether the FI slope of
these neurons significantly differed in both the low value and high
value groups of input resistance, membrane time constant, and
rheobase (analysis not shown). For all three attributes sex was
a significant source of variation. However, there was no inter-

action between sex and attribute amplitude. None of the attri-
butes demonstrated a bimodal distribution. This is consistent
with the hypothesis that sex differences may be present in both
MSN subtypes. Supporting this, both MSN subtypes express
non-nuclear, membrane-associated, estrogen receptor « and 3
expression in the dorsal striatum (Almey et al. 2012; Grove-
Strawser et al. 2010; Kuppers and Beyer 1999; Mermelstein et
al. 1996; Schultz et al. 2009; Toran-Allerand et al. 1992).
Large area estradiol infusions into female dorsal striatum
modulates sensorimotor performance (Becker et al. 1987),
paced mating behavior (Xiao and Becker 1997), and learning
and memory tasks (Zurkovsky et al. 2007). This indicates that
estradiol activation of both MSN subtypes does not appear to
compromise estradiol-induced changes in striatal-mediated be-
haviors. Furthermore, the dorsal striatum as a whole is neces-
sary for aspects of maternal behavior (Henschen et al. 2013;
Keer and Stern 1999). We thus tentatively speculate that sex
differences in intrinsic excitability are present in both D1- and
D2-dopamine receptor expressing MSNs with the full ac-
knowledgement that this prediction needs to be empirically
tested.

Changes in intrinsic membrane excitability can occur
either independently or in concert with other neuronal attri-
butes such as changes in extracellular nonsynaptic gluta-
mate levels and/or synaptic input (Otaka et al. 2013; Schulz
2006; Suska et al. 2013; Wolf 2010; Zakon 1998). In the
current study, no sex differences in mEPSC properties were
detected. Possible sex differences in excitatory or inhibitory
synaptic input have not yet been examined in adult dorsal
striatum or in prepubertal nucleus accumbens. Interestingly,
Woolley and colleagues found increased mEPSC frequency
and spine density in female rat adult MSNs located in the
nucleus accumbens core and to a lesser extent in the nucleus
accumbens shell, and that these properties are modulated by
cocaine exposure (Forlano and Woolley 2010; Wissman et
al. 2012; Wissman et al. 2011). Increased spine density has
since been detected in female medium spiny neurons in
human nucleus accumbens (Sazdanovic et al. 2013). MSN
spine density is modulated by estradiol in adult female
hamsters and rats in the nucleus accumbens core but not in
other striatal regions (Peterson et al. 2014; Staffend et al.
2011). Given that changes in synaptic input are often linked
with changes in intrinsic excitability (Ishikawa et al. 2009;
Wolf 2010), this raises the possibility that estradiol or
cocaine exposure also differentially modulates intrinsic ex-
citability by sex. While no sex differences in excitatory
synaptic input were found by the current study, we do note
that both intrinsic excitability and synaptic input may be
reorganized during puberty, similar to glutamatergic synap-
tic input in the medial amygdala (Cooke 2011; Cooke and
Woolley 2009), or modulated by adult hormone profile
(Woolley 2007; Wu et al. 2011). These questions all repre-
sent outstanding avenues of research, in addition to deter-
mining ionic mechanism, the possible roles of dopamine and
dopamine receptors, and whether the sex differences re-
ported here are generated through a genetic/epigenetic
mechanism or via the organizational influences of early
steroid sex hormone exposure/absence (McCarthy and Ar-
nold 2011).
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