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Abstract

Recent diversity studies have revealed that microbial communities of natural environments are dominated by species-like,
sequence-discrete populations. However, how stable the sequence and gene-content diversity are within these populations
and especially in highly dynamic lotic habitats remain unclear. Here we quantified the dynamics of intra-population diversity
in samples spanning two years and five sites in the Kalamas River (Northwest Greece). A significant positive correlation was
observed between higher intra-population sequence diversity and longer persistence over time, revealing that more diverse
populations tended to represent more autochthonous (vs. allochthonous) community members. Assessment of intra-
population gene-content changes caused by strain replacement or gene loss over time revealed different profiles with the
majority of populations exhibiting gene-content changes close to 10% of the total genes, while one population exhibited
~21% change. The variable genes were enriched in hypothetical proteins and mobile elements, and thus, were probably
functionally neutral or attributable to phage predation. A few notable exceptions to this pattern were also noted such as
phototrophy-related proteins in summer vs. winter populations. Taken together, these results revealed that some freshwater
genomes are remarkably dynamic, even across short time and spatial scales, and have implications for the bacterial species
concept and microbial source tracking.

Introduction

During the past decade, several studies assessed microbial
diversity of lotic (and other) ecosystems [1-6], focusing on
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sequence-discrete populations may typify natural micro-
bial communities across habitats. Members of sequence-
discrete populations are characterized by high gene-
content and nucleotide sequence similarity among them-
selves, often—but not always— > 95% genome-aggregate
Average Nucleotide Identity (ANI), and also exhibit
ecological differentiation (e.g., different in-situ relative
abundances) and/or lower relatedness (e.g., <90% ANI)
to close relatives [9, 10]. Such populations possess the
attributes of bacterial species at a level that 16S rRNA
gene sequencing cannot often assess; therefore, they
represent an important unit to study. Assessing the dis-
persal patterns of sequence-discrete populations within a
lotic system could provide higher resolution as to where
populations originate and thus, aid in understanding
microbial community assembly patterns and in population
source tracking.

Further, quantifying gene content and sequence diversity
dynamics within sequence-discrete populations may provide
new insights into the frequency with which genomic adapta-
tions are occurring in response to temporal or spatial gradients
within a specific habitat, and into the molecular and ecological
mechanisms that maintain (or not) sequence-discrete popula-
tions. Prokaryotic species are known to be highly dynamic,
with strains of the same species frequently differing in up to
~30% of their genes [11, 12], but the rates of gene loss/gain in
time scales that matter for human activities (e.g., days to years)
remain elusive. Hence, by studying the diversity of sequence-
discrete populations over time and space we hope to provide
new insights into the species concept.

Most studies on sequence-discrete populations to date
have been limited to the description of the presence/
absence and relative abundance of different sequence-
discrete populations in freshwater lakes [13, 14] and
experimentally warmed vs. control soils [15]. Only
recently, Bendall et al. [16] used sequence-discrete
populations from Trout Bog Lake in order to identify
population genome-wide and gene-specific sequence
diversity sweeps. This study mostly focused on the
investigation of different models of sequence evolution
and speciation, using changes in single-nucleotide poly-
morphism sequences (SNPs). Bendall et al. also assessed
gene-content variation of selected sequence-discrete
populations based on an approach employing co-
assembly of all samples. However, because co-assembly
represents the “average” genome present in all samples,
genes that were abundant at some but not all time points
could be overlooked. These genes can be more efficiently
tracked by assembling genomes from individual samples
and querying them against individual metagenomes (the
goal of our study).

Here we used shotgun metagenomics in order to
explore the spatiotemporal dynamics of sequence-discrete
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populations in a highly dynamic riverine ecosystem, the
Kalamas River (Northwest Greece), and quantify changes in
intra-population gene-content diversity between sampling
time points and seasons. Kalamas is a medium sized river
that runs through NATURA 2000 protected areas but also
receives urban and industrial, treated and untreated, sewage
from the city of Ioannina (150,000 inhabitants) through the
Lapsista ditch (Fig. 1). By assessing the read coverage
patterns of the genes of 14 populations across time and
space we were able to quantify gene-content diversity
within these populations, and assess their origin, e.g.,
autochthonous freshwater vs. allochthonous populations
originating from the ditch.

Materials and methods
Land cover analysis and sample processing

The basin of the Kalamas River (Fig. 1) was obtained based
on the first-order mountainous water basins map provided
by the Greek Ministry of Productive Reconstruction,
Environment and Energy (http://geodata.gov.gr/en/organiza
tion/hydroscope), using the sub-basins dataset. (Supple-
mentary information).

Samples were collected from five different sites (Fig. 1)
at five different time points, spanning a period of
23 months (Table S1a) and exhibiting different flow rates
(Table S1b). Our site selection scheme aimed to reveal the
effect of the Lapsista ditch, which is expected to influence
the water quality and bacterial community composition
due to treated and untreated sewage it carries from human
activities in the most populated city along the Kalamas
River (see also land use data in Fig. 1). Therefore, in our
sampling scheme, site KO was selected as a representative
pristine site with minimal influence from urban areas
~600 m upstream of the entry point of the ditch into
Kalamas (Fig. 1, Table S1a), and site K1 was selected as a
representative site with influence from the urban area, due
to its proximity to the entry point of the ditch (~300 m
downstream). The site K2 is located just before a hydro-
electric dam along the river and 68.6 km downstream of
the Lapsista ditch entry point. Site K2 was selected in
order to assess the recovery of bacterial communities
downstream of the ditch and the influence of water flow
rate. Site K3, located at the estuary, was selected to
evaluate how the bacterial diversity is affected by the
freshwater/saltwater transition. Finally, a site within the
ditch (KL), only 3.37 km downstream from Lake Pam-
votis and 24.61 km before the entry point of the ditch, was
chosen in order to study the bacterial communities within
the ditch that presumably received the highest human
impact (Fig. 1, Table Sla).
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Fig. 1 Kalamas river drainage basin and sampling locations. a Sam-
pling locations along the Kalamas River. The river receives water from
the adjacent drainage basin of Lake Pamvotis through an artificial
ditch. Samples were collected from the ditch (KL), upstream of the
influx of the ditch into the river (K0), immediately downstream of the
influx location (K1), from within the river dam (K2), and estuary (K3).

Samples were collected from November 2012 (M1) to
September 2014 (M23) [Sample naming scheme: M for
metagenomes; number reflects the number of months
since the first sampling point, which was given the
number 1]. November 2012 (M1), February (M4), and
May (M7) 2013 samples were collected from three sites
(K1, K2, and K3) along the Kalamas River (Fig. I,
Table S1a), and were described previously [6]. Additional
samples were collected in June 2014 (M20) and Sep-
tember 2014 (M23) from sites KL (within the ditch), K1
(where the ditch merges with the main river), and KO
(upstream of the merging point). All water samples were
immediately transferred in the lab and were processed and
sequenced as previously described [[6], Supplementary
information].

Metagenome sequence trimming and assembly

Illumina reads were trimmed using a Q =20 Phred
quality score cut-off using SolexaQA++ [17] and only
trimmed reads longer than 50bp were considered for
further analysis. Metagenomic reads were assembled
using IDBA with default settings for metagenomes [18].
Protein-coding genes were predicted from contigs longer
than 500bp using MetaGeneMark.hmm with default
parameters [19]. Sequencing and assembly statistics for
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b Land cover of the drainage basin for each sampling location along
the river. The characteristic land cover represents the immediate
watershed area that drains into each sampling location, while the
cumulative basin land cover represents the total drainage area
(including the land areas that drain into upstream sampling points)

the metagenomic datasets are provided in Table Slb.
Metagenomic datasets have been deposited in NCBI
SRA under the bioproject PRINA304352.

Population genome binning

Contigs longer than 500 bp were used for binning using
MaxBin v2.1.1 with default settings [20]. In each binning
run, only contigs from the assembly of an individual
sample were used. CheckM and the MiGA webserver
(www.microbial-genomes.org) were used to estimate
completeness and contamination of each metagenome-
assembled genome (MAG) based on the recovery of single-
copy universal bacterial proteins [21, 22]. Recruitment
plots were constructed for MAG contigs and genes using
the ‘enveomics.R’ package v1.4.1 from the Enveomics
Collection [23]. MAGs were manually checked for con-
sistent coverage across contigs by assessing how many
times—on average—the query contig sequence was cov-
ered by reads. Contigs with substantially different coverage
than the average (>2 fold) and those containing duplicated
universal genes or having different taxonomy from the
majority of the contigs based on a MyTaxa [24] scan as
implemented in MiGA were removed in order to reduce
contamination. Final MAGs are available through: http://
enve-omics.ce.gatech.edu/data/
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Table 1 Analyzed population metagenome-assembled genomes (MAGs)

MAG Origin®  Completeness Contamination N50 CheckM /MiGA taxonomy  SDP boundary (%)° Genes Annotated genes
kall.Rhi K1-M1  99.1 2.7 32622 Rhizobiales 98 3812 2868
kal2.Com KI1-M20 30.6 0 11298 Comamonadaceae 95 2145 2049
kal3.Com KI1-M20 30.6 1.8 13718 Comamonadaceae 95 904 796
kal4.Rhi K1-M20 34.38 0 2622  Rhizobiales 95 2442 1988
kal5.Flav. =~ KO-M20 84.7 54 4132 Flavobacteriaceae 95 2210 2008
kal6.Flav =~ K0-M23 64.00 0 2923  Flavobacteriaceae 95 2202 1956
kal7.Gam KO0-M23 22.78 1.9 1763  Gammaproteobacteria 95 1046 947
kal8.Bac K1-M7  96.71 4.31 9189  Bacilli/Exiguobacterium 95 3386 3283
kal9.Com KI-M1 99.07 0.76 39707 Comamonadaceae 98 4556 3672
kall0.Por KI1-M1  89.6 3.2 77881 Porphyromonadaceae 98 3127 2430
kalll.Mol KI-M1  81.46 3.37 10908 Mollicutes 95 2286 618
kall2.Act KI-M4 65.8 4.5 5022  Actinobacteria 95 1420 1068
kall3.Act KI-M4 44.1 1.8 4747  Actinobacteria 95 1613 1239
kall4.Noc KI1-M1  70.3 2.7 2661  Actinobacteria/Nocardiaceae 98 5269 4820

Origin denotes the metagenomes from which the bin was extracted.

"SDP boundary: sequence-discrete population threshold used

Abundance and gene-content diversity evaluation
of recovered populations

Recruitment of metagenomic reads to the reference MAG
population sequence was used to identify areas of
sequence discontinuity for each MAG as described pre-
viously [10]. For most MAGs, 95% nucleotide identity,
the most common threshold for the distinction of species
from sequence data [25], corresponded to the area of
sequence discontinuity and thus, was used as the threshold
to identify reads representing the reference population and
estimate the coverage of the populations (Table 1,
Fig. S1). Reads with less than 95% identity were assumed
to represent additional, co-occurring populations. For four
populations (out of 14 evaluated in total), the area of
sequence discontinuity was determined to be around 98%
nucleotide identity based on visual inspection of the
recruitment plots and/or steep drops in coverage (by more
than 3-4 orders of magnitude), and a 98% minimum
identity threshold was used in these cases (Table 1,
Fig. S1.1, S1.2). Read mapping against the MAGs was
performed with BLAT in competitive best-match searches
[26], using all available MAGs as a reference database in
order to eliminate multiple nonspecific matches of the
same read(s) to different MAGs. Coverage values were
normalized for dataset and genome size (Reads per Kbp of
genome per Million reads, RPKM). For the linear corre-
lation analysis, the coefficient of variation of the nor-
malized coverage values over time was correlated with the
Average Nucleotide Identity of mapped reads (ANIr)
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against the reference MAG genome sequence, using all
mapped reads with identities above the selected nucleo-
tide identity threshold (i.e., 95 or 98%). For samples (time
points) with > 1x coverage the actual normalized coverage
value was used in the correlation analysis; for samples
with lower coverage a zero coverage value was used.
Each gene of a MAG was evaluated as being present
or variable within a metagenomic dataset as long as the
corresponding reference MAG was detected in the same
dataset with at least 7x coverage in order to reduce the
impact of spurious results. When population coverage is
lower, genes may be missed due to sequence depth
variation and not real absence resulting in a false positive
result for the variable gene [27]. This coverage level
(>7x) and p-value (<0.01; see also below) ensured a low
number of possible false positives based on a sub-
sampling experiment (Fig. S2). For the subsampling
experiment, the variable genes of the population MAG
(see below) were identified by mapping the reads of the
metagenome that the MAG originated from against the
MAG; the metagenome was subsequently sub-sampled
in order to test the effect of different population coverage
levels on gene detection (Fig. S2). Genes detected as
absent in the reference metagenome (no-subsampling)
and in a subsample were denoted as true positives (TP);
false positives (FP) were detected as variable (absent in
this case) in the subsample only. Conversely, true
negatives (TN) and false negatives (FN) were defined as
present (detected) in both the subsample and the refer-
ence datasets, and present in the subsample but not the
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reference, respectively. Accordingly, Recall (TP/[TP +
FN]), Precision (TP/[TP + FP]), as well as the F1 score
(2 x Precision x Recall/[Precision + Recall]) were calcu-
lated. To identify variable genes, the coverage of a gene
was first calculated by mapping reads on contigs, and
calculating the average coverage of all bases of each
gene. The resulting distribution of gene coverage values
for a MAG were fit to a log-normal distribution using the
enveomics.R package v1.4.1 [23] in order to calculate
the probability that a gene with zero or near zero cov-
erage was absent from the population studied using a p
=0.01 cut-off value (null hypothesis was that the gene is
present in the population); only genes with p <0.01 were
considered variable. When multiple metagenomes
showed population coverage > 7x for a MAG of interest
(minimum cut-off to analyze a population for gene-
content diversity) only the two metagenomes with the
highest abundances were used (Table S2b).

Simulations were performed to test whether or not our
methodology overestimated the number of variable
genes, and whether differences in coverage (abundance)
of a target population could affect the ANIr values. For
this, I1lumina-like reads were generated in-silico from an
E. coli genome (GCF_000931565.1_ASM93156v1)
using Grinder (-cf 10 -md uniform 0.1 -mr 95 5 -rd 150
uniform 5), and spiked in four different metagenome-like
datasets at different concentrations (coverage; 0.1, 0.2,
0.5, 1, 2, 5, and 10 x). The first two datasets were ran-
domly selected genomes from RefSeq excluding
Escherichia coli and Shigella spp., and were used as
background. The other two datasets were Kalamas
metagenomes. Thus, 28 test datasets were produced.
Finally BLAT and recruitment plot analysis were per-
formed against seven reference E. coli genomes
(GCF_001865295.1_ASM186529v1,
GCF_003018115.1_ASM301811vl1,
GCF_002952895.1_ASM295289v1,
GCF_002237305.1_ASM223730v]1,
GCF_001577325.1_ASM157732v1,
GCF_002012205.1_ASM201220v1,
GCF_000931565.1_ASM93156vl) to test if the
gene-content and sequence diversity of the reference
genome compared to the genome spiked in the datasets
could be recovered reliably by the recruitment plots
(Fig. S3).

Supplementary information

The supplementary information provides additional details
about land use coverage, flow rates analysis, metagenome
sequencing, processing of 16S rRNA gene-encoding meta-
genomic reads, and functional annotation and phylogenetic
analysis of identified genes.

Results

Microbial taxonomic and functional diversity in
Kalamas samples

The riverine bacterial community composition, as assessed
by the 16S rRNA gene (16S) fragments recovered in the
metagenomes, exhibited drastic changes throughout the
months as well as between sites examined (Fig. S4). Only a
small fraction of the community exhibited persistent abun-
dance profiles throughout most of the samples. From a total
of 6245 identified OTUs, only 199 (~0.03%) were detected
in all time points examined (Fig. S5), revealing highly
dynamic microbial communities. These results were, in
general, consistent with our previous study [6], which sur-
veyed microbial community-wide shifts on a subset of the
available samples (November 2012 through May 2013) as
opposed to individual populations, the main focus of the
present study. Our previous study had shown that differ-
ences in functional diversity were much more limited
compared to taxonomic differences, and were related, at
least in part, to the differential flow rate of the river water
and the impact of anthropogenic activities. For instance, we
had previously noted the prevalence of nitrogen metabolism
proteins in KI-MI1, and virulence, stress response, and
aromatic compounds degradation associated proteins in K2-
M7 samples, presumably reflecting the effect of the treated
and untreated sewage carried by the ditch. Consistent results
were observed in the 2014 samples studied here (Supple-
mentary information).

Persistent populations show higher intra-population
diversity

Population binning was focused on samples from site K1
because we wanted to assess how the populations recovered
from this site changed over time and space; and on KO for
assessing the persistence of populations associated with
communities receiving less anthropogenic impacts. The
K1 site was also the only site for which five different time
points were available, allowing for higher temporal reso-
lution. Contig binning from these samples resulted in the
recovery of 14 population MAGs with>30% estimated
completeness (Average = 65.22%) and < 6% contamination
(after manual curation of the MAGs; Table 1), reflecting, in
part, the low sequencing effort applied (~2 Gbp/sample, on
average, Table S1b) relative to the diversity of the microbial
communities sampled. The high diversity of the community
was also reflected in the low coverage values estimated by
Nonpareil (Table S1b), a tool that estimates coverage based
on read redundancy [28].

Taxonomic assignments based on phylogenetic recon-
structions of the housekeeping single-copy genes for each

SPRINGER NATURE
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Time series in K1 site

Microdiversity in time series
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Fig. 2 Abundance and sequence diversity of the identified bacterial
populations (MAGs). The leftmost panel presents the abundance of the
MAGs (rows) through time in samples (columns) from the K1 site as
normalized coverage (Reads per Kbp per Million Reads, or RPKM).
The middle panel shows the sequence diversity of the populations
measured by ANIr for each of the time points (represented by open
circles) where MAGs were detected (> 1 RPKM). The rightmost panel

MAG revealed that the recovered genomes represented
novel bacterial taxa at the genus level of Rhizobiales,
Comamonadaceae,  Mollicutes,  Porphyromonadaceae,
Actinobacteria, Flavobacteriaceae, Gammaproteobacteria,
and a novel species of the Exiguobacterium genus (Firmi-
cutes, Bacilli) (Table 1). The 14 MAGs (Table 1) collec-
tively recruited 2.24-22.4% of the total metagenomic reads,
depending on the sample considered (Fig. S6). The largest
percentage of read matches were for sample K1-M1 from
which the majority of the MAGs were recovered (Table 1).

Among the 14 identified population genomes, five were
abundant only in one out of the five time samples for the
K1 site, and remained in very low abundance or below the
detection limit in the other time points (Fig. 2; 5 bottom
rows including kal10.Por-kal14.Noc). Those non-persistent
populations were typically characterized by low intra-
population sequence diversity, as reflected by the observed
high ANIr values (>99%) in the sample in which the
population was detected (no samples were mixed; Fig. 2).
The remaining nine MAGs represented persistent or reoc-
curring populations, and were detected throughout the 5
time points spanning 23 months, exhibiting at least 10
RPKM for two time points or more (Fig. 2, kall.Rhi-kal9.
Com). The persistent populations were characterized by

SPRINGER NATURE

denotes the potential origin of the each population based on their
detection in the KO (with drainage areas mostly representing moun-
tainous forest regions) and KL (representative site of the urban area)
sites. Presence (and thus, origin) was defined as coverage of the
population by at least 100 RPKM in at least two time points from
either the KO or KL sites (M20, M23)

ANIr values ranging from 97.58 to 99.42%, with an average
of 99.18%. However, in all 14 cases ANIr never dropped
below 97% (Fig. 2), suggesting that all populations studied
represented assemblages showing levels of intra-population
sequence diversity lower than that of an average named
species [25] or the Prochlorococcus marinus and SAR-11
populations in the ocean [9, 29]. For instance, ANIr of
abundant Prochlocococcus populations in Tara Ocean sur-
face water metagenomes using the exact same methodology
was often 95-96%, depending on the sample considered
(data not shown).

We further hypothesized that higher temporal persistence
of MAGs (coverages>1x) would be associated with
higher intra-population diversity, thus, less clonal popula-
tions. The underlying assumption is that such persistent
populations represent autochthonous freshwater taxa that
are highly ecologically successful in the lotic habitat
(Kalamas River in this case). Thus, these populations would
be characterized, in general, by longer evolutionary time
since the last strong intra-population diversity sweep, and
larger population sizes, allowing for mutations (diversity) to
accumulate. In contrast, allochthonous taxa that only
recently entered the lotic environment from soil or waste-
water and thus, likely underwent a strong population
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Fig. 3 Relationship between sequence diversity and persistence
through the time series of the populations studied. The coefficient of
variation of the normalized relative abundance (measured by sequence
coverage; y axis) shows a significant linear correlation with the esti-
mated intra-population sequence diversity calculated as ANIr (x axis).
The linear regression is shown for all the identified populations (gray)
or for a selected subgroup representing bins with completeness > 70%
(black)

bottleneck event during this transition and/or were short-
lived in the lotic environment, would be characterized, on
average, by more clonal populations. Consistent with our
hypothesis, correlation analysis of the coefficient of varia-
tion in abundance across samples (i.e., persistence) with
average ANIr revealed a significant (R =0.73, p = 0.0052)
linear correlation (Fig. 3). When populations with low
genome completeness (<70%), and thus lower quality,
were removed from the analysis, this correlation became
even stronger (R =0.83, p =0.0053) (Fig. 3). Finally, our
simulations showed that ANIr values were essentially
independent of the relative abundance (coverage) of the
population for coverage 1-2x or higher, which was the case
for all populations and samples assessed above (Fig. S3).
And, the coefficient of variation (persistence) was inde-
pendent of the relative abundance of the population in the
metagenome; thus, the correlations reported above were not
merely due to differences in relative abundances of the
populations.

Tracking the source of populations

To provide further support for the abovementioned con-
clusions, we next tested a related hypothesis, i.e., the more
persistent populations should be detectable in the upstream,
more pristine site (KO) since they represent more

freshwater-autochthonous organisms, whereas several of the
less persistent (more allochthonous and clonal) populations
should be detectable only in the Lapsista ditch (KL) site.
The abundance of the populations typically changed along
the river, depending on the geographic distance between the
samples and the season sampled (e.g., flow rate of water;
Table S1b, Fig. S7), and largely agreed with our previous
16S-based findings from the same river [6]. During the first
sampling in November 2012 (M1) populations that were
abundant in K1 gradually decreased in abundance towards
the estuary. Three months later (M4), a time at which the
dam was opened and the water discharge increased
(Table S1b), the identified populations exhibited similar
abundances across sites, showing slight increases towards
the estuary. Finally, in May (M7) some MAGs increased in
K2, while others completely disappeared and reappeared in
K3, and still others (Flavobacteriales) gradually increased
from K1 to the estuaries. During May, water flow was
relatively low compared to other time points (Table Sla),
resulting in high heterogeneity between samples and prob-
ably, species sorting effects [30, 31].

To assess the origin of the populations, i.e., to identify
whether the abundant populations originated from the
Lapsista ditch (KL) or from the upstream site (K0), we
focused on the June (M20) and September 2014 (M23)
samples. These were the only time points during which we
sampled from all three sites: KO, K1, and KL. Further, we
focused on relatively abundant populations for this analysis
for more robust assessment of intra-population genetic
diversity, i.e., MAGs that exhibited > 1x coverage in one of
the samples K1-M20 and/or K1-M23. From the nine MAGs
that were present in June or September, we were able to
determine the potential origin of five. Specifically, repre-
sentatives of Flavobacteriales (kal5.Flav, kal6.Flav) and
Gammaproteobacteria (kal7.Gam) likely originated from
the more pristine site (minimal urban impact, Fig. 1) based
on their presence in both KO and K1 sites but complete
absence in KL, while kal4.Rhi (Rhizobiales) and kal8.Bac
(Bacilli) originated from inside the Lapsista ditch (Fig. 2).
Kall.Rhi, most likely a member of the class Alphaproteo-
bacteria and probably the order Rhizobiales, and kal2.Com
and kal3.Com (Burkholderiales, Comamonadaceae) were
not detected in either KO or KL sites, making it challenging
to determine their potential origin. We hypothesize that
these populations originated from the Lapsista ditch since
they were completely absent from the upstream pristine site,
which could not be otherwise easily explained due to the
very short distance (997 m) between the two sites (KO and
K1) and the larger distance between K1 and KL (~25 Km).
Other potential sources for the latter populations, which our
sampling scheme could not appropriately assess, included
contamination sources within the Lapsista ditch down-
stream of the KL sampling site, or surface runoff or local
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Fig. 4 Example of intra-population gene-content variation through
time. a Genome-wide coverage profiles of the identified population
kal4.Rhi in two time points (M1 and M20, representing a 20 month
time span). The coverage was estimated based on high-identity
metagenomic reads mapping to the genes of the reference genome
sequence. For each coverage profile, the absence of a particular gene
(no reads mapping) is shown as a blue vertical line, the width of which
is proportional to the length of the region with the variable genes. b

(unaccounted) events between KO and K1. Consistent with
our hypothesis above, however, the populations that were
abundant in the KO site showed lower ANIr (i.e., more
diversity) than those originating from the KL site (97.81 vs.
99.11 ANI on average).

Temporal gene-content diversity of populations

Overall, between 904 and 5269 genes were identified in
each MAG, with ~25-80% of these genes annotated by a
function other than hypothetical (Table 1, Table S3). We
sought to quantify the variability in gene content through
time for each of the identified populations. For each time
point, the absence of a gene was assessed by deviation (i.e.,
drop) in sequencing depth (coverage) from the MAG
average as described in the Materials and Methods section.
Since all our MAGs were constructed from specific sam-
pling points and sites (Table 1), we focused on genes that
were variable (e.g., lost) in subsequent times points rather
than those initially absent and detected (acquired) later,
although the gene loss and acquisition processes likely
occurred at similar rates, since genome size represents a
stable property of a bacterial species -as an average of all
members of the species. Overall, gene-content variability
varied among the 14 populations assessed, affecting from
4.17% of the total genes in the genome (kal5.Flav) up to
21.18% (kal4.Rhi), with an average around 10%
(Table S2b). Amongst these variable genes, depending on
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kal4.Rhi [PRC operon, scaffold 838]

Comparative analysis of the PSII operon of the riverine population
kal4.Rhi with the PSII operon from the reference closed genome of
Rhodopseudomonas palustris strain HaA2. GDR Geranylgeranyl
diphosphate reductase, h.p. hypothetical protein, R.C.M/L Photo-
system II Reaction center protein M/L, LHP Light harvesting protein.
Note that the genomic region encoding the PSII operon was present in
the population genome during the last time point but was absent during
the first time point

the population considered, at least 34% (average 49.01%)
were either not annotated or annotated as hypothetical
or conserved hypothetical (Table S2b). Amongst the
variable annotated genes, 12%-34% (average 27%) were
short (< 100 amino acids), a higher fraction than that of the
total annotated genes in the genome (average 14%,
Table S4).

The relative abundance of sequences encoding hypo-
thetical proteins among variable genes was higher (¢-test; p
< 0.008; 34—75%) than the ratio of the hypothetical genes in
the genome (20-33%). Similarly, the relative abundance of
mobile elements (phages, transposases, CRISPRs) among
variable genes varied from 2.48% to 5.13%, exceeding in
all cases their respective percentages among the total genes
in the genome (#-test; p <0.002) (Table S2b, S4). While the
majority of variable genes (i.e., those encoding hypothetical
proteins) were not predicted to have known functional
consequences for the population (Table S4), some genes
were likely related to potentially important metabolic
properties such as carbohydrate utilization or adaptation to
changing environmental conditions (e.g., temperature and
sun radiation). For instance, for kal5.Flav and kal6.Flav,
proteins related to protein biosynthesis and membrane
receptors and transportation were prevalent amongst the
gene categories that were variable (Table S4). Conspicuous
among the cases examined, we detected the complete
absence of proteins involved in photosystem II in MAG
kal4.Rhi (unique in this MAG amongst all MAGs, Fig. 4),
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including the reaction center and light harvesting proteins,
in November but not in the June samples, when sun
radiation (and hence photosynthesis potential) is at its
highest (Fig. 4, Table S4,S5). Similarly, in the same
population, proteins involved in nitrogen limitation, and
beta-carotene metabolism e.g., poly(3-hydroxyalkanoate)
polymerase, also appeared only in June.

Collectively, these results revealed that at least some
of the populations were highly dynamic in terms of gene
content, even within the relatively short period of time
spanned by our samples. While we are currently unable
to distinguish between the possible mechanisms for the
gene-content variability observed, i.e., gene loss during
the time sampled vs. growth of latent sub-populations
with substantial gene-content differences in the river or
its feeding waters, it should be noted that the intra-
population sequence diversity (ANIr values) did not
change significantly between the time points where gene
variation was observed, and the populations were abun-
dant (> 7 x) and robustly detected (as also proved from
our simulation analysis) during these time points. Thus,
the “same” population was detected between the time
points in terms of phylogenetic affiliation or assembled
(consensus) genome sequence, and it showed substantial
intra-population gene-content diversity, independent of
the process(es) that underlie the gene-content variation.

Only within kal2.Com and kal3.Com there were sub-
stantial differences in ANIr values (>0.7 percent units)
observed between M1 and M20 samples (Fig. 2), and fur-
ther investigation was performed in order to determine
whether this was due to increased intra-population diversity
or to the presence of distinct populations. Phylogenetic
reconstruction among overlapping reads encoding the same
marker gene (encoding the proteins FtsY, HisS, or FMT) or
assembled partial genomes from each of the corresponding
metagenomes provided evidence for the prevalence of dif-
ferent abundant genotypes between November and June,
with the ANI values among the genotypes of these two
populations being ~98%. (Supplementary information,
Fig. S8). Thus, the most parsimonious explanation in these
two cases is that the gene-content variation observed was
due to sub-population or strain replacement, and these
results were not artifacts of our methodology or assembly
(see also below).

Discussion

In a previous study of the Kalamas River [6], we showed
that hydrological and climatic factors (Table S1) largely
account for the highly dynamic changes in microbial com-
munity composition in the river, and hypothesized about the
allochthonous origin of several of the community members

sampled. Analysis of additional sites and time points at a
finer level, i.e., that of individual sequence-discrete popu-
lations, as part of the present study confirmed and expanded
upon these previous findings (Fig. 2; and Supplementary
information).

In particular, several of the sequence-discrete popula-
tions studied, but not all, were present at the same sampling
point even after a time period of 23 months, showed similar
intra-population sequence diversity (ANIr values) between
sampling points, and were sequence-discrete compared to
co-occurring populations (Fig. 2). Most of these populations
were not clonal but showed substantial intra-population
sequence diversity and were highly dynamic in terms of
gene-content, which could change substantially even within
a few months or between the seasons of a year (Table S2b,
S4). This level of gene-content variation is comparable to
what has been revealed by comparison of isolate genomes
of the same named bacterial species, e.g., 5-10% gene-
content difference, on average, for genomes showing > 98%
ANI [32, 33]. Yet, the evolutionary time represented by
isolates is much longer than that sampled here, revealing
that bacterial species may be even more dynamic func-
tionally than previously thought. Despite the highly
dynamic gene content and regardless of the underlying
mechanisms for it (e.g., gene loss or strain/genotype
replacement), the populations remained discrete compared
to other microbial community members, re-occurred, and
were traceable over time and space, consistent with the
interpretation that these populations represent species-like
units. These results also agreed with those reported pre-
viously on other ecosystems that the ANIr values of the
majority of the populations of a microbial community did
not change over time or space [9, 10, 14, 34]. If these
populations were equated to species, then our results would
also favor an ecological definition of bacterial species.

One possible explanation for the temporal gene-content
variability observed is strain/sub-population replacement.
That is latent sub-populations, which showed substantial
gene-content differences but did not differentiate enough in
terms of sequence diversity among themselves to be
detectable by our methods [e.g., to provide uneven
recruitment plots or different ANIr values [9]], differentially
grew in abundance between our sampling points within the
river, or -most likely due to the short retention time of the
river- in the feeding waters. The alternative explanation or
mechanism is that of real deletion (or acquisition) of genes
from the genome; for instance, through intra-genomic
recombination. Analysis of recently divergent Vibrio
cyclitrophicus genomes, showing>98% ANI among
themselves similar to members of the sequence-discrete
population studied here, has indicated that genes can
recombine and sweep through the population very rapidly
[12]. Obtaining genomes of individual cells of the
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populations over time will be necessary, however, to dis-
tinguish between the two distinct scenarios in the future.

Further, the level of intra-population diversity (e.g.,
ANIr) was positively correlated with the coefficient of
variation of the abundance of the population across samples
(Fig. 3), revealing that persistent populations exhibit higher
intra-population sequence variation. While these results are
clearly preliminary and more populations and data points
should be examined before more robust conclusions can
emerge, it is important to note that the correlation became
stronger when low quality genomes were removed from the
analysis, indicating that the correlation might be even
stronger with more, high-quality genomes and samples
available. Thus, our findings indicated that examining
sequence-discrete populations and their level of intra-
population ANIr, might represent a promising approach to
determine endemic/autochthonous (e.g., higher intra-
population diversity) vs. allochthonous (e.g., typically
lower intra-population diversity) species in such a dynamic
lotic system like those found in the Kalamas River.
Tracking of sequence-discrete populations supported this
conclusion, at least in part. For example, (presumptive)
freshwater-allochthonous or more clonal populations tended
to originate from the Lapsista ditch (kal4.Rhi, kal8.Bac;
Fig. 2) while freshwater-autochthonous populations were
typically detected in the upstream more pristine site (kal5.
Flav, kal6.Flav, kal8.Gam; Fig. 2).

In contrast, our own previous study using the origin of
the 16S rRNA gene to study the same riverine system for
the same purposes [6] met with mixed success due to the
high sequence conservation of 16S rRNA gene sequences
(see also below). In particular, the origin of the population
cannot often be determined with confidence based on
detection of the organism(s) that provides the best 16S
rRNA gene match from a particular location because similar
matches are provided by multiple organisms that thrive in
different habitats and have highly similar 16S rRNA gene
sequences [6]. Further, similar, yet distinct populations can
be grouped under the same 16S-based OTU (97% identity
cut-off) [8] as was the case for the two Comamonadaceae
populations kal2.Com and kal3.Com. Even though the
specific 16S sequence of each of the two Comamonadaceae
populations was not assembled together with the MAG, all
16S reads that were assignable to this family (supplemen-
tary information) showed >98% identity to each other (i.e.,
belonged to the same OTU). Thus, the 16S rRNA gene
sequences would not be adequate for assessing the abun-
dance, presence and origin of these two Comamonadaceae
populations. These limitations were much less pronounced,
if existing at all, at the sequence-discrete individual popu-
lation level.

While most temporal gene-content differences were
dominated by hypothetical proteins, indicating that they
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were likely functionally neutral for the populations, a few
exceptions were also noted. Most notably, the Rhizobiales
population (kal4.Rhi) was characterized by the absence of
proteins involved in photosystem II (PSII), including reac-
tion center and light harvesting proteins, which were present
only in June but not in November samples (Fig. 4,
Table S4). The presence of these genes was accompanied at
all time points by genes encoding the different subunits of
NADH quinone oxidoreductase responsible for the reversed
translocation of electron between NAD' and NADH; the
latter genes were still detectable in the genome when PSII-
related genes were lost (Fig. 4, Table S4). The proton
translocating NADH quinone oxidoreductase, also known
as complex I, is widespread across bacteria with different
metabolic lifestyles such as obligate aerobes, strict anae-
robes, lithotrophs, anoxic phototrophs, and methylotrophs
[35]. In the case of phototrophs, the presence of complex I,
along with the PSII reaction center, is required for solar
energy conservation since it creates a proton motive force in
order to synthesize NADH from quinols. However, in the
absence of the PSII apparatus, the complex I proteins could
be used in another energy-generating pathway by transfer-
ring electrons from NADH to quinones. Rhopseudomonas
palustris, although phylogenetically distant to kal4.Rhi, is
an example of such a metabolically versatile bacterium that
can switch between aerobic and anaerobic respiration and
anaerobic phototrophy in the presence of complex I proteins
and PSII [36]. Comparisons between the PSII operon of R.
palustris HaA2 strain and kal4.Rhi PSII operon revealed
amino-acid identities ranging from 37% to 67%, while
operon organization was slightly different mainly regarding
the genes adjacent to genes related to reaction center
(Fig. 4). Collectively, the changes in gene content in kal4.
Rhi between M1 and M20 imply the presence of multiple
genotypes of genetically similar populations that thrive in
different environmental conditions such as light intensity in
this case. These different genotypes could be the result of
horizontal gene transfer that has been shown to be common
in purple photosynthetic bacteria and especially in proteins
responsible for photosynthetic reaction centers M and L of
PSII [37], which represent the same functions as the vari-
able genes identified in our case (Fig. 4). We find it
remarkable that distinct genotypes, with such substantial
metabolic and energy-generating differences, could be
members of the same population and thrive in different
seasons, like the kal4.Rhi genotypes appear to do. Similar
results have been recently observed based on genome
sequencing of Erythrobacter sp. isolates, where closely
related isolates (ANI>98%) did not share PSII genes [38].
Therefore, our analysis indicated that this pattern might not
be uncommon in the environment. Whether these PSII
genes were phage-encoded, similar to psbA genes in cya-
nophages [39], remains unclear, although kal4.Rhi variable
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genes were highly enriched in mobile elements related to
transposases and phage integrases (4.65% vs. 3.08%),
compared to the total genes in the MAG,.

Mobile elements and hypothetical proteins were enriched
amongst variable genes, by two fold or more, compared to
the total genes in the genome for all populations studied.
These results corroborate with previous findings
showing that the majority of genes that differ
between closely related strains involve hypothetical proteins
and mobile elements that typically represent ephemeral
invaders of the genome [40], and are shorter in length on
average [41].

While it is possible that some of the intra-population
gene-content diversity observed was likely the result of
technical limitations such as mis-assembly or chimeric
reference MAG genome sequences used in the recruit-
ment plots, we believe that the effects of these factors on
our conclusions were small, in general, e.g., likely
affecting fewer than 20% of the genes detected as vari-
able. Firstly, all genome sequences used as references to
represent a population were recovered from a single
sample, and were not the result of co-assembly, which is
more likely to combine distinct populations into one and
therefore obscure sample-specific genetic diversity.
Further, the same reference genome sequences (recov-
ered from a single sample) were assessed against reads
from all samples, without mixing reads from different
samples, which circumvented any sample-specific biases
or sequencing artifacts affecting genome recovery. All
populations that were used for gene-content analysis had
at least 7x coverage in the corresponding samples, which
ensured that most of the genes present in the genome
were sequenced at enough depth to be recovered by
metagenomic reads (Supplementary information). This
was also consistent with the simulations and sub-
sampling analyses performed here. In particular, we
tested the robustness of our methodology to detect
variable gene by spiking reads from an E. coli genome
into an in-silico synthesized (mock) dataset or a Kalamas
metagenome and used another E. coli genome, with
known gene-content differences compared to the former
E. coli, as reference sequence in recruitment plots. The
genes of the reference identified as variable in the
metagenomes by our approach matched closely (< 10%
difference) the expected gene-content differences
between the two genomes as long as the coverage of the
reference genome by the spiked in reads were 1x or more
(lower coverage level provided for more variable results;
see Fig. S3). Similar analysis but with Kalamas meta-
genomes that were sub-sampled in order to provide dif-
ferent levels of coverage (abundances) of the target
population showed that the number of false positive or
false negative variable genes remained 20% or less of

total positives/negatives when coverage of the popula-
tion was 7x or higher (Fig. S2). Therefore, our metho-
dology likely did not overestimate the number of genes
that were predicted as variable between different time
points. Finally, visual inspection of assembly and read
recruitment plots for the populations studied did not
reveal any inconsistencies that could be attributed to
sequencing and library creation artifacts such as con-
sistently low coverage of high or low G + C% regions
for the genome (Fig.S1). It is also important to note that
our approach assessed only gene absence, not gene gain,
in order to avoid complications related to horizontal
acquisition of genes in specific samples occurring since
the onset of our sampling or the presence of recently
transferred genes in non-target populations (which would
provide false positive matching reads).

Overall, we were able to identify the potential origin of
different populations from different sites based on the level
of intra-population ANIr values and their correlation to
relative abundance, and to follow specific populations along
the river. These results showed that the approach outlined
here would be more reliable and robust, although more time
consuming and demanding in terms of bioinformatics ana-
lysis, for microbial source tracking compared to alternative
approaches such as PCR analysis of specific genetic mar-
kers. If more sampling points and high-quality genome
sequences become available in the near future, so
that a more comprehensive catalog of autochthonous
(freshwater) vs. allochthonous organisms is created,
high-resolution, robust microbial source tracking can be
realized.
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